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Mathematical models for numerical studies of transportation of a mass of loose granular material 
during occurrence of  a series of deep gas-dynamic ejections are developed using methods of 
the mechanics of  continuous and granular media. Features of the kinematics and dynamics 
of development of  this phenomenon are analyzed. Results of a numerical experiment and 
recommendations on use of the models in studies of specific transportation regimes are given. 

In the present paper,  we study a phenomenon that  is physically close to a pin-point ejection blast, 
which is used in blasting technologies. But,  instead of chemical explosives, compressed gas is the energy 
source in this case. Pulsed feeding of compressed gas produces disintegration of an arbitrary discontinuity of 
parameters, and this can be classified as a physical explosion. 

The principle of the transportat ion method consists in successive occurrence of a series of gas-dynamic 
ejections from deep sources that  operate in the regime of a traveling wave. Transportat ion occurs as follows. 
A poured layer of granular material 1 (Fig. la) is placed on a transport  tray 2. Sources of gas energy 3 are 
equally spaced at the bo t tom of the tray. Operation of the i th source produces a symmetr ic  cavity A in the 
mass. Next, after a delay the (i + 1)th source operates. As a result, an asymmetric  cavity B forms, and the 
mass of granular material located between the cavities acquires a velocity in the direction of the line of least 
resistance OC, i.e., in the direction of transportation. Then the (i + 2)th source comes into action, etc. The 
mass moves in a direction opposite to the direction of successive operation of the sources. 

Transportat ion is also possible when camouflet cavities are produced in the mass (Fig. lb). Thus, 
operation of the i th source produces a symmetric cavity A in the mass. Then,  after a delay, during which 
the camoufiet cavity A reaches maximum dimensions, the (i + 1)th source operates. As a result a cavity B 
develops, and the mass of loose material moves in the direction of transportation, filling the cavity A. 

The main factors governing the development of the process include the energy and flow rate of the gas 
per pulse, the delay of operat ion of the next source, the distance between the sources, the height of the layer. 
and the physical properties of the transported material. 

Deep insight into the physical essence of the phenomenon can be gained from analysis of the correlation 
among the basic parameters (pressure, densities, velocities of both phases, stress state, packing, and porosity 
of the mass). Obviously, the transportat ion rate is largely determined by the pressure fields in the carrier phase 
and the stresses in the mass. Simultaneous control of the set of parameters can be successfully performed by 
mathematical modeling. In turn, the development of correct mathematical  models requires information on 
the physical essence of the phenomenon. In this connection, we note that  a feature of the process is repeated 
action on the mass by deep gas sources. As a result, the cohesion between grains is broken, and the medium 
can be regarded as cohesionless or loose. Under such conditions, the dry-friction forces in relative motion ot 
the particles are large compared to the cohesive forces, which is typical of a loose medium. In mathematical 
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modeling of multiphase flows, such a medium can be modeled using methods of the mechanics of disperse 
media (as a conglomerate of individual particles) or a phenomenological approach in which the mass of loose 
material is described by a continuous model. In the present work, both approaches are considered. 

1. The model constructed using methods of the mechanics of continuous media [1] uses the following 
assumptions: the size of inhomogeneities (grains) in the mixture is much larger than the molecular-kinetic 
sizes; the size of inhomogeneities is much smaller than the distances at which the macroscopic parameters 
change significantly; the kinetic energy of small-scale motion of the carrier phase can be ignored; the average 
tensor of viscous stresses for the carrier phase is small (the viscosity of the gas will be taken into account only 
in the interphase interaction force); there are no phase transitions; the mixture is monodisperse (the grains 
of the loose material are of equal size); random motion of particles can be ignored; there is no comminution 
or coalescence of solid undeformable particles; displacements of the disperse phase and variations in its true 
density are significant. 

As the basis for the mathematical model, it is expedient to use the approach adopted in [1], where the 
interpenetrating motion of the carrier phase and the disperse phase is described by a heterogeneous model 
of two continuous media. According to the adopted assumptions, the equations of conservation of mass and 
momentum of the phases are written in two-dimensional form as 

Op: + VkplV  = o; (1.]) 
0t 

0p2 + vkp2v  = o; (1.2) 
at 

dlV1 
pl d---'-t- = - V a l P 1  --R:2 + p:g; (1.3) 

d2V2 -Vct2P1 + Vko'~ + R12 + P2g- (1.4) P2 d----~ - 

Here Pl and p2 are the densities of the carrier and disperse phases, respectively, V~ and V2 k are the velocity 
components of the carrier and disperse phases in the direction of the coordinate k, V is a differential operator, 
~1 and a2 are the concentrations of the carrier and disperse phases, respectively, pig and p2g are the mass- 
force vectors; PI is the pressure in the carrier phase, a} is the effective (contact) stress in the skeleton of the 
disperse phase, and R12 is the interphase force, which is generally expressed as R12 : - P l • a l  - Fit - Fro, 
where the quantity Fit is due to viscous forces at the phase interface (the viscous-friction force) and Fm is 
associated with small-scale pressure fluctuations due to acceleration of the phases relative to each other (the 
added-mass force): 

F ro=  XmP~ (d  t~  1 dV'2). (1.5) 

Here p0 = pl /a:  is the true density of the solid phase and Xm is the added-mass coefficient. For a monodisperse 
mixture with spherical particles of radius a at concentrations lower than the packing density, we have Xm = 0.5. 



The substantive derivatives associated with the motion of the ith component are defined by the relation 

di 0 0 
a--i = oS + V~k ox k" 

The viscous-friction force for relative motion of the phases is determined using the friction coefficient 
G~. The empirical relations obtained for stationary blowing of gases through a poured layer of a loose medium 
of different porosity [2] are of the form 

C ~ = C ~  0 ) =  24 4.4 
Re12 + Re~ s + 0.42, a2 ~< 0.08; (1.6) 

Ct ~ = ( a 2 -  0.08)C (2) + (0.45-  a2)C (') 0.08 < a2 ~< 0.45; (1.7) 
0.37 

Cry=C(2) = 4 (  150a2 ) 0.45 ~< ~2. (1.8) 
3'al 1.75 + alRel--'--'~ ' 

The Reynolds number used in (1.6)-(1.8) is determined from the formula Rex2 = (2ap~ where 
w12 is the relative velocity of motion of the phases and pl is the dynamic viscosity of the gas (for air, 
/zl = 1.7.10 -5 Pa.sec). However, since interphase interaction also occurs at high concentrations of the 
disperse phase, the interaction forces should reflect constraints on the relative motion of the phases. In this 
connection, the Reynolds number must be represented with allowance for the ratio of the phase concentrations: 

alRel2 Otl Rel2 
Re12, = - -  - (1.9) 

a l ,  1 - ba~/s 

Here b ~ 1.16 [2]. 
Generally, the viscous-friction force is 

0 2 
FtJ = Ct~Tra 2 Pl~ (1.10) :~ �9 

According to the last assumption that the model must take into account significant displacements of 
the disperse phase, the momentum equations (1.3) and (1.4) with allowance for (1.5) and (1.10) are written as 

dlV1 d2V~ 
pl(1 + Xma2) dt Xma2pl dt - - a l V P 1  - F# -k- Pig, 

dlV1 d2V2 = - a2VPI  + + Ft~ + P2g. 
-Xma2pl  "dr + (P2 + Xrna2pl) dt 

Reducing these expressions to a form that is convenient for numerical calculations, we obtain 

d lV,  ( ) 

Pl 

On} P2 
+ ~ Xma2 - Ft, ~ + XmVt2(plg + P2g) + P2g; (1.11) 

Pl 

( ) dt [p2 + x,.~(f,~ + m)] = - V P ~  x ~ . ~  + ~2 + ~..~1~2 

+ F.  (1.r_,) + \ ~ x k  + + + Xrna2plg. 

According to [3], in constructing a computational algorithm based on a model of unsteady gas-dynamic 
flow, it is expedient to use the method of large particles. This allows one to obtain divergent conservative 
or dissipative steady-state schemes and to reveal the properties of solutions, including those for limiting flow 
regimes. In this connection, it is necessary to reduce Eqs. (1.11) and (1.12) to divergent form. For this, Eqs. 
(1.1) and (1.2) should be multiplied by the velocities of the corresponding phases and added to (1.11) and 



(1.12). As a result, the momentum equations take the form 

0PLY1 0plVI2-VPI )('ra~176 [00"~ P2 ( F / ~ )  ][ P2 P2 ] 
Ot F 0----~-- Xm(~2(Pl+P2)+P2 +[.0x k X,na2 ~ - g  +(P2+Px)g Pl~mOt 2 + Pl--+1 ;(1.13) 

o,o2v  -ve  .,,' 1 +l '~_F.+,olg 1 1 
"~ ~ "~x - Xma2(pl+p2)+p2 f[~"~xk+'b'#+P2g)~xma2 .' ' [X~o~ 

To define the pressure in the carrier phase, it is necessary to use the equation of state 

P1 = p~  (1.15) 

where T1 is the gas temperature and R is the gas constant. 
In the case where the carrier medium is a gas, the heat-flux equations are 

dlT1 alP1 dip 0 0 ( OTI'~ 
plCl g---~ -- P---~l ~ + ~xk -AI ~xk] + Q1 + Ft,(VI - V2); (1.16) 

d2T2 0 ( OT2~ 
p2c2 dt = _X2 b- zk] + Q2. (1.17) 

Here cl is the specific heat of the carrier phase at constant pressure, c2 is the specific heat of the disperse 
phase, A1 and A2 are the thermal conductivities of the carrier and disperse phases, respectively, and Qi is the 
rate of interphase heat exchange: 

Q1 = S12a11AINu1(Ts - T1); (I.18) 

Q2 = S12allA1Nu2(Ts - T2). (1.19) 

The quantity Ts is obtained from the condition Q1 = -Q2  and characterizes the average temperature 
at the phase interface: 

Ts = (A1NulT1 + A2Nu2T2)/(AINul + A2Nu2). (1.20) 

According to experimental studies [4], the Nusselt number as a characteristic of heat removal for a 
sphere is appropriate for use in the processes considered in the form 

Nul = 2 + 0.459 Re~ "33, Prl = (Clpl)/A1, (1.21) 

where Prl is the Prandtl number. Relation (1.21) is valid over a rather broad range of parameters: 1 < Re < 
70,000 and 0.6 < Pr < 400. 

According to [2], Nu2 ~ 10 is used in formula (1.19) for the intensity of heat exchange between the 
surface of a disperse particle and the carrier phase. 

In relations (1.18) and (1.19), the friction parameter al is determined from known values of the 
concentration and permeability of the disperse phase and the Reynolds number [2, 5]. 

The parameter $12 characterizes the phase interface in a unit volume of the mixture: 

,-q12 ----" (n47ra2)lVcalc, n -- (3VcalcO~2)/(47ra2). (1.')2) 
Here n is the number of particles of the solid phase in the volume of a cell of the calculation region Vcalc (in 
Cartesian coordinates, Vcalc "= dx . dy . dz). 

Loading of the mass can be taken into account using a macroscopic theory that extends Hooke's law 
to a saturated porous medium. In this case, the tensor of effective stresses a} l is determined by Hooke's law 
through the tensor of effective stresses of the granular skeleton. The macrostrain tensor for the second phase 
is determined from the average displacements [h~ l] of an elementary macrovolume: 

/014] 0[h l  
= 0.5 \-8 r k + (1.23) 



Then, the average tensor of effective stresses has the form 

2 O) 

where 6m is the Kronecker delta (6 kt = 1 for k = l and 8 kl = 0 for k r l), /3T2 is the thermal-expansion 

of the material, and X O) and/~0) are the effective elastic moduli of the coefficient material. 

The modulus O(r s) characterizes the cohesion of the grains and determines the packing intensity of the 
mass under forced deformation. It is uniquely determined via the Lam~ elastic moduli: 

(x(s) + + (1.22) 

~O) << 1 corresponds to soft media, and for ~2~ (s) = 1 the medium is ideally The value of the modulus 
cemented. 

The Lamfi elastic moduli are expressed in terms of the strain modulus E and the Poisson ratio ~: 

A(s) = Ezg/[(1 + tg)(1 - 2~)],  /~0) = E l [ 2 ( 1  + tg)]. (1.26) 

For grains of quartz sand, E = 96.4 GPa, and for a sand mass, E ~ 1.2 �9 107 Pa. The Poisson ratio is 
= 0.25-0.3. 

Equations (1.1), (1.2), (1.5)-(1.10), and (1.13)-(1.26) serve as a mathematical basis for the development 
of an algorithm for numerical simulation of a pin-point physical explosion in a mass of a loose medium. 
Because of the clearly expressed asymmetry of the phenomenon, it is expedient to construct the computational 
algorithm in two-dimensional Cartesian coordinates. 

Previous experimental results [6] show that the process is most intense under initial conditions where 
a single gas-dynamic ejection in a mass produces a cavity with an insignificant blasting factor (the ratio of 
the cavity radius to the depth of location of the charge). In this connection, in the numerical experiment, the 
range of the initial conditions considered corresponds to this ejection regime. 

The initial conditions include the physical properties and parameters of the gas phase (air) and the 
solid (quartz sand), the depth of the transported-material layer, the coordinates of the gas-energy sources 
along the axes, the distance between the sources, and the delay of operation of the (i + 1)th source. To 
organize an algorithm by a first-order finite-difference scheme, a layer of fictitious cells is introduced at each 
edge of the calculation region. 

The boundary conditions for the flow of the gas and solid phases in the lower portion of the calculation 
region (at the bottom of the transport tray) are specified as nonpenetration conditions. In the remaining parts 
of the boundaries, the gas phase has the possibility of free outflow. The solid phase above the level of the 
daytime surface W can also move freely beyond the calculation region. Below the level W at the right and 
left edges of the calculation region nonpenetration conditions were specified for the solid phase. 

The dimensions of the calculation region, 80 x 50, ensured calculations with insignificant (about 2-3 %) 
disturbance of the mass balance of the solid phase due to outflow of it beyond the control space. 

Results of the numerical simulation agree with results of experimental studies (by the criterion of 
transportation rate) with an accuracy of about 20%. In physical experiments, it is difficult to ensure continuous 
control of the simultaneously varying set of basic parameters. Numerical experiments are free of such a 
drawback. 

Figure 2 illustrates the distribution of the velocity, stress, and density fields in the mass in the stage of 
operation of the ith gas source. In this stage, the process develops symmetrically. The intensity of each of the 
parameters is shown by isolines. As an illustration of the qualitative features of numerical calculation, Fig. 2 
shows the transportation process under the following initial conditions: depth of the layer of loose material 
W = 0.17 m, distance between the sources a = 0.15 m, dimensions of the transport tray 1.0 x 0.5 x 0.02 m. 
delay of operation of the (i + 1)th source t = 0.03 sec, and gas pressure in the sources Pz = 5 �9 105 Pa (total 
energy of the gas with allowance for the degree of expansion Etotal = 40 J). 

The pattern of development of the phenomenon obtained by numerical simulation agrees with results 
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of photorecording of the process in experiments. In particular, the largest value of the velocity of the mass is 
observed at the daytime-surface line. Figure 2a shows the beginning of formation of an ejection sheaf, which is 
an inverted cone with the apex at the center of the charge. The disperse phase is accelerated in the horizontal 
direction as well, but its velocity is markedly lower than in motion toward the free surface. This is caused 
by the counteraction of the effective stresses at points of particle contact (Fig. 2b) under compression of the 
mass. The stresses are significant in regions of the mass in which its displacement is limited. The largest 
stresses arise at the bot tom of the transport tray and decrease with approach to the daytime surface. At the 
epicenter of the ejection, a rarefaction wave propagates from the daytime surface into the depth of the mass. 
This agrees with the data in Fig. 2a. 

The evolution of the disperse phase is shown in Fig. 2c. At the real time t = 5 �9 10 -3 sec, the lowest 
density is observed at the center of the charge, indicating the beginning of formation of a camouflet cavity. 
The disperse-phase density near the center of the ejection changes continuously, decreasing with distance from 
the point of location of the energy source. Near the source, a certain increase in density (about 5-6%) relative 
to the initial density is observed outside the camouflet cavity. This indicates packing of individual particles 
of the loose material in denser aggregates. This property is most pronounced at the impenetrable wall of the 
transport tray. 

The characteristic features of the development of the phenomenon upon operation of the (i + 1)th 
source are characterized foremost by asymmetry. In particular, the velocity of the mass is highest from the 
side of the camouflet cavity produced by the previous ejection (Fig. 3a). Therefore, the disperse phase located 
between the sources has a momentum whose vector points toward the transportation. This kinematics is due 
to both the pressure gradient in the carrier phase and the gradient of effective stresses. Zones of elevated 
stresses (Fig. 3b) are shown by isolines, which are shifted from the center of the (i + 1)th ejection toward the 
rigid bottom of the transport tray and toward the mass with the initial bulk density, undisturbed by the ith 
ejection. From the side of the cavity produced by the ith ejection, i.e., along the line of least resistance, the 
intensity of the stress fields is markedly lower. 

The displacement of the disperse phase located between the sources is shown in Fig. 3c. Obviously. 
the development of the (i + 1)th ejection causes a less significant rise of the mass above the initial level of 
the daytime surface. This is compensated for by motion of the mass in the direction of transportation. As a 
result, cavity A is filled with unidirectionally moving disperse phase, and cavity B develops asymmetrically. 



i.e., in the direction of transportation. 
Numerical experiments permit extending the range of the parameters studied, which is sometimes 

unattainable in physical experiments. Thus, in a physical experiment, it was difficult to detect the variation 
of the parameters in the mass upon ejection from two sources with a small delay (about 2 �9 10 -2 sec). This 
complicated the analysis of the physical essence of the phenomenon, which in this case was characterized by 
a certain decrease in the transportation index [6]. At the same time, numerical simulation of the phenomenon 
in this range of the parameters shows that early start of the next source causes counter motion of fragments 
of the mass in the zone between the sources. This is responsible for exchange of momentum, a decrease in 
the horizontal velocity, and an increase in the effective stresses on the boundary between the sources, which 
hinders displacement of the disperse phase in the direction of transportation. 

2. The methods of the mechanics of loose media are based on representation of the transported mass as 
a conglomerate of individual particles. This approach is due to the course of the process, which is accompanied 
by repeated pulsed gas-dynamic action on the mass. Therefore, it is reasonable to assume that there is no 
cohesion or there is a small degree of cohesion between individual particles. This method of modeling can 
also take into account the mechanism of directed mass transport associated with collisions of particles during 
their evolution in space. Modeling of a mass of transported material by a conglomerate of discrete particles 
eliminates mathematical conditionalities in the description of discontinuities in the continuum of the dispersed 
phase during its evolution and gives clear insight into the location of the discontinuities in space. 

In models of the mechanics of loose media, the particles have a definite shape and all the properties 
of solid bodies. The medium thus modeled resists external compressive loads and does not resist tensile 
loads. The evolution of its fragments is necessarily accompanied by a change in volume due to packing of the 
particles. The particles tend to form aggregates with a definite order of arrangement, depending on the shape 
of the particle surface. This causes a change in the volume of the pore space. The porosity is a factor that 
governs the development of the phenomenon. It can be described by the relation a l  = 1 - p/pO, where p is 
the mass of a unit volume of the two-phase medium and p0 is the true density of the solid phase of the mass. 
In experiments [6], a l  varies from 0.15 to 0.42. In this connection, we examine the correctness of modeling 
the solid phase by individual spherical particles packed in aggregates. 

Deresevich [7] performed a mathematical analysis of the types of packing of grains of a solid phase. 
The grains are treated as equal-sized, contacting spheres that  are arranged in space in a regular order. Results 
of the analysis show that  the porosity of a mass of such particles varies from 0.29 to 0.47, depending on the 
type of packing. Comparison of this index with the range of t~l in experiments shows that the experimental 
range of al  agrees with data calculated for the packing of spherical particles in aggregates. This shows the 
possibility of representing a mass of transported material by a conglomerate of individual spherical particles. 

In a mathematical description of the process, it is expedient to use a heterogeneous model that takes 
into account the interpenetrating motion of the two media in the presence of a relative velocity and a definite 
mechanism of their interaction. This model describes most adequately the motion of a medium with high 
porosity and low concentration of the solid phase, i.e., when the difference in velocity between the phases 
has a significant effect on the flow parameters. These parameters are largely determined by phase interaction 
forces. Excluding small-scale effects, the present model takes into account the aerodynamic, Archimedes, and 
added-mass forces. 

The aerodynamic-drag force acting on an individual particle under restricted conditions of motion can 
be defined by (1.6)-(1.10). 

The Archimedes force acting on a particle is determined by the pressure gradient in the carrier mediun7 
and the acceleration of the flow: 

4ra3 p~ ( dVl ) (2.1, 
FArchimedes = 3 - - ~  - gl �9 

Here gl has the meaning of external mass forces. 
The added-mass force F,n is determined by the inertial effects caused by particle motion in a dense 
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medium. For motion of particles of constant size and shape in a gas, we have 

F,,,= X,.,,p~ 1 d~t~ ) , (2.2, 

where Xm is the added-mass coefficient (for a sphere, Xm = 0.5). 
The gravitational force acting on an individual particle can be written as F a  = p2gW2, where W2 is 

the volume of the solid phase within the calculation cell. 
Thus, the equations of motion of a single particle in the absence of mass and heat exchange are written 

in vector form as 
0V2 

m ~ = Ftj + FArchimedes -I- Fm + FG, 

where V2 is the velocity of the solid phase. 
In the presence of shocks in the region of integration, the system of equations that describe the gas flow 

in two-dimensional Cartesian coordinates is conveniently written in the form of unsteady Euler equations: 

0191 0p11/1 
Ot + div(p]V~) = O, Ot 

aplUl aP1 
~----~ + div (pluIV1) + ~ - F s  = 0, 

OP1 
+ div(plVlV1) + ~ - F s  = O, 

0plEI  
c9--'--~ + diM (pIEIV1) + d iv(P1Vl)  = 0. 

Here Fs is the overall vector of the forces (1.10), (2.1), and (2.2) that act on a unit mass of the disperse phase 
in the calculation cell. 

For closure of this system, the following equation of state is used: PI = Pl(pl,/I). The specific internal 
energy is expressed in terms of the total energy E1 and the velocity: II = El - V12/2. Finally, we have 
el = (k - 1)pl(El - V2/2). 

A numerical algorithm for the gas flow was developed using the method of large particles. At the 
same time, the description of the evolution of the solid phase is based on the method of particles in cells. 
which is graphic, gives an analogy between calculation and experiment, and permits investigating complex 
phenomena in the dynamics of multicomponent flows. However, a characteristic feature of this method is 
computational instability. In the classical use of the method, the instability was suppressed by increasing 
the number of particles in one cell of an Eulerian grid. This smooths out the jumps in the parameters in 
the calculation region with passage of a particle from one cell to another. However, it has been shown that. 
despite the significant evolution of computer facilities, such a solution of the stability problem involves a 
considerable increase in computer time. Thus, taking into account that for modeling of collision processes, in 
each integration step exhaustive use of all particles by pairs is required, it is questionable whether constructing 
this model is appropriate. 

In this connection, for solution of the posed problem, we employed the method of cellular-continuous 
representation of discrete particles of the solid phase. Figure 4 shows the mass-transfer process using this 



method. At the beginning of the process there is mass M (one particle) of the disperse phase present in a 
calculation cell i , j .  The local coordinates (within the cell) of the mass 0.5dx, O.5dy correspond to the point 
O. The value of M is determined by the given porosity of the mass ~1, the volume of the cell Vc~lo and the 
true density of the solid phase: M = Vca~c(1 - a:)p0. It is arbitrarily assumed that  the mass of the particle is 
continuously located inside the cell and their boundaries coincide (Fig. 4, dashed lines). 

Next, under the action of the carrier phase, the particle is displaced and occupies the local coordinates 
dxm, dym (point O') within the cell i , j  with dimensions dr, dy. Part  of its mass is transferred to neighboring 
cells (Fig. 4, dot-and-dashed lines), and the new values of the mass in the cells are of the form 

(a) M(i-I,D = M(i-I,D + (dx/2 - dxm)(dy - dyrn + dy/2) dz p2(1 - a:) ;  
(b) M(i_l,j+ D = M(i_I,j+I) + ( dz/2 - dzm)( dyrn - dy/2) dx p2(1 - a l ) ;  
(c) MCi,j+I ) = M(i,j+I ) + (dx/2 + dzrn)(dyrn - dy/2) dx p2(1 - ~1); 
(d) M(i,j) = M(i,D + (dz/2 + dzm)(dy - dym + dy/2) dx p2(1 - a:). 

For a different direction of the velocity vector O-O I, mass transfer is organized using the same principle. 
Thus, the algori thm organizes continuous flow of masses. The  calculation stability is affected by the 

porosity and density of the gas phase, which, in this case, also change continuously and are determined by 
the mass of the disperse phase in the cell. Thus, in the cell on the left, the porosity is c~l(i_l,j) = (Vc~lr - 

M(i_l,j)/p2)Vcal c and the gas density is P l ( i - l , j )  = pO(i_l,j)al(i-l,j)" 
This method allows one to solve the stability problem of the algorithm, thus decreasing the calculation 

time, to increase the dimensions of the calculation region, and to take into account collisions of particles with 
one another and with the boundary surface. 

In the next stage of integration, an exhaustive search for all particles by pairs is performed to detect 
particles that  collide. In this case, each particle is a sphere, and their relative positions before and after 
collision are determined from geometric calculations and the known values of the velocities. The particle radius 
is calculated from the initial porosity and the cell size of the calculation region: R = [3Vc~ac(1 -Otl)/(4r)] 1/3. 

The initial packing of particles in aggregates is specified using the initial porosity and the results of 
[7]. In inelastic collision, particles exchange momentum and lose some momentum.  The coefficient of loss for 
collision of a particle of quartz sand with a surface is determined experimentally in [8]. 

In our numerical studies performed using the given model, the initial and boundary conditions are 
similar to the conditions for the model of the mechanics of continuous media. 

The t ime step was selected for each calculation cycle from the condition At = min [Ku dy/(al + ]Ull)], 
where a: is the velocity of sound in the gas: a: = [(kP:)/p:] ~ Ku is the stability coefficient (the Courant 
number). In our studies, Ku = 0.3-0.5. 

Figure 5 shows the variation of the parameters in the mathematical  modeling of the phenomenon in the 
stage of operation of the first source. In experiments, the initial gas pressure in the charge was Pz = 0.5 MPa. 
the total energy of the charge with allowance for the degree of expansion [6] was Etotal = 21 J, the height of 
the layer was 0.2 m, and the initial porosity was 0.3. 

Results of the mathemat ica l  modelling show that,  at the beginning of operation of the i th source (see 
Fig. 1) ejection develops symmetrically about the vertical axis of this source. The  variation in the gas-pressure 
fields (Fig. 5a) below the dayt ime surface level and above it at the real t ime t = 1 �9 10 -3 sec is shown by 
isolines. Figure 5a reflects the qualitative difference between perturbat ion propagation in the pore space of 
the mass and in the homogeneous atmospheric medium. Some increase in pressure at the bot tom of the mass 
is due to the presence of the impenetrable bot tom surface of the transport  tray. 

Figure 5b shows the variation in the propagation velocity of the perturbation. This figure is similar in 
appearance to the character of variation of the pressure fields. The highest velocity at this moment is observed 
in the pore space. 

The evolution of the mass presented in Fig. 5c agrees with experimental results of photorecording 
the process at the t ransparent  wall of a transport tray. This figure shows the moment  of deformation of the 
camouflet cavity toward the daytime surface and the beginning of development of an ejection cavity. 

The operation of the (i + 1)th source is presented in Fig. 6. In this stage, the phenomenon develops 
asymmetrically. The curve of gas-pressure variation (Fig. 6a) shows that  this parameter  manifests itself mos: 
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vividly at the impenetrable bottom surface and in the zone of the mass undisturbed by the first blast. Near 
the produced camouflet cavity, the pressure is insignificant. This is confirmed by the considerable increase in 
the gas velocity toward the free space of the opening camouflet cavity (Fig. 6b). The jump in the gas velocity 
spreads beyond the bottom surface in the zone of the ith ejection. 

The velocity of the solid phase is shown by isolines in Fig. 6c, which presents the beginning of 
displacement of the mass at the bottom surface of the transport tray. It is necessary to note that, at the 
given moment, the fragments that form the vault of the opening camouflet cavity have a radial velocity 
relative to the center of the ith source. Therefore, the evolution of fragments to the right of the vertical axis 
of the ith source is largely determined by collisions of particles. In such interaction, the mass located between 
the sources acquires a velocity in the direction of transportation, i.e., toward the source that was the first to 
come into action. 

The results of the mathematical modeling show satisfactory agreement with experiments, within 20%. 
Thus, the models developed give a detailed illustration of the physical essence of a pin-point blast in 

a loose material, and they are useful in quantitative analysis of the mechanics of mass transportation. This 
may find practical use in determining the performance of systems that implement this technology. 

In numerical studies of a pin-point physical explosion, the model of the mechanics of continuous media 
is most suitable for monitoring stresses in a transported material, its packing, filtration processes, and heat 
exchange in phases. It is appropriate for a description of the process in the camouflet stage of development. 

The model of the mechanics of loose media adequately reflects the development of the ejection sheaf 
in the atmosphere and the evolution of fragments upon their collisions. It is useful for continuous monitoring 
of the position of discrete masses in space for a description of the process of transportation by production of 
ejection cavities. 
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